Spatial Fuzzy Clustering Using Varying Coefficients 1st Edition by Huaqiang Yuan, Yaxun Wang, Jie Zhang, Wei Tan, Chao Qu, Wenbin He – Ebook PDF Instant Download/Delivery. 9783540738701
Full download Spatial Fuzzy Clustering Using Varying Coefficients 1st Edition after payment
Product details:
ISBN 13: 9783540738701
Author: Huaqiang Yuan, Yaxun Wang, Jie Zhang, Wei Tan, Chao Qu; Wenbin He
To consider spatial information in spatial clustering, the Neighborhood Expectation-Maximization (NEM) algorithm incorporates a spatial penalty term in the objective function. Such an addition leads to multiple iterations in the E-step. Besides, the clustering result depends mainly on the choice of the spatial coefficient, which is used to weigh the penalty term but is hard to determine a priori. Furthermore, it may not be appropriate to assign a fixed coefficient to every site, regardless of whether it is in the class interior or on the class border. In estimating class posterior probabilities, sites in the class interior should receive stronger influence from their neighbors than those on the border. To that end, this paper presents a variant of NEM using varying coefficients, which are determined by the correlation of explanatory attributes inside the neighborhood. Our experimental results on real data sets show that it only needs one iteration in the E-step and consequently converges faster than NEM. The final clustering quality is also better than NEM.
People also search for Spatial Fuzzy Clustering Using Varying Coefficients 1st:
fuzzy clustering python
spatial fuzzy clustering
spatial clustering in r
igraph clustering coefficient