LNCS 2764 – The Lovász Number of Random Graphs 1st Edition by Amin Coja-Oghlan – Ebook PDF Instant Download/Delivery. 3540380450, 9783540380450
Full download LNCS 2764 – The Lovász Number of Random Graphs 1st Edition after payment
Product details:
ISBN 10: 3540380450
ISBN 13: 9783540380450
Author: Amin Coja-Oghlan
LNCS 2764 – The Lovász Number of Random Graphs 1st Edition: We study the Lovász number ϑ along with two further SDP relaxations ϑ 1/2, ϑ 2 of the independence number and the corresponding relaxations <span id="MathJax-Element-1-Frame" class="MathJax_SVG" style="box-sizing: inherit; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; font-size-adjust: none; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="ϑ¯”>ϑ¯, <span id="MathJax-Element-2-Frame" class="MathJax_SVG" style="box-sizing: inherit; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; font-size-adjust: none; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="ϑ¯1/2″>ϑ¯1/2, <span id="MathJax-Element-3-Frame" class="MathJax_SVG" style="box-sizing: inherit; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; font-size-adjust: none; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="ϑ¯2″>ϑ¯2 of the chromatic number on random graphs G n, p . We prove that <span id="MathJax-Element-4-Frame" class="MathJax_SVG" style="box-sizing: inherit; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; font-size-adjust: none; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="ϑ¯,ϑ¯1/2,ϑ¯2(Gn,p)”>ϑ¯,ϑ¯1/2,ϑ¯2(Gn,p) in the case p<n − 1/2 − ε are concentrated in intervals of constant length. Moreover, we estimate the probable value of <span id="MathJax-Element-5-Frame" class="MathJax_SVG" style="box-sizing: inherit; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; font-size-adjust: none; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="ϑ,ϑ¯(Gn,p)”>ϑ,ϑ¯(Gn,p) etc. for essentially the entire range of edge probabilities p. As applications, we give improved algorithms for approximating α(G n, p ) and for deciding k-colorability in polynomial expected time.
LNCS 2764 – The Lovász Number of Random Graphs 1st Edition Table of contents:
1. Introduction and results
1.1. The concentration of ϑ, ϑ¯, etc.
1.2. The probable value of ϑ(Gn,p), ϑ¯(Gn,p), etc.
1.3. Algorithmic applications
1.4. Organization of the paper
1.5. Notation
2. Preliminaries
3. The concentration results
4. The probable value of ϑ(Gn,p), ϑ¯(Gn,p), etc.
5. Random regular graphs
6. Approximating the independence number and deciding k-colourability
7. Conclusion
People also search for LNCS 2764 – The Lovász Number of Random Graphs 1st Edition:
lovász local lemma
lovasz number of graph
a number less than five
a survey of lobster fishermen found
lovász theta number
random lobster graph