Data Mining: Practical Machine Learning Tools and Techniques 2nd Edition by Ian H. Witten, Eibe Frank – Ebook PDF Instant Download/Delivery. 0120884070, 978-0120884070
Full download Data Mining: Practical Machine Learning Tools and Techniques 2nd Edition after payment
Product details:
ISBN 10: 0120884070
ISBN 13: 978-0120884070
Author: Ian H. Witten, Eibe Frank
Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references.
The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more.
This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses.
- Algorithmic methods at the heart of successful data mining―including tried and true techniques as well as leading edge methods
- Performance improvement techniques that work by transforming the input or output
Data Mining: Practical Machine Learning Tools and Techniques 2nd Table of contents:
Part I: Machine Learning Tools and Techniques
1. What’s It All About?
- 1.1 Data mining and machine learning
- 1.2 Simple examples: The weather problem and others
- 1.3 Fielded applications
- 1.4 Machine learning and statistics
- 1.5 Generalization as search
- 1.6 Data mining and ethics
- 1.7 Further reading
2. Input: Concepts, Instances, and Attributes
- 2.1 What’s a concept?
- 2.2 What’s in an example?
- 2.3 What’s in an attribute?
- 2.4 Preparing the input
- 2.5 Further reading
3. Output: Knowledge Representation
- 3.1 Decision tables
- 3.2 Decision trees
- 3.3 Classification rules
- 3.4 Association rules
- 3.5 Rules with exceptions
- 3.6 Rules involving relations
- 3.7 Trees for numeric prediction
- 3.8 Instance-based representation
- 3.9 Clusters
- 3.10 Further reading
4. Algorithms: The Basic Methods
- 4.1 Inferring rudimentary rules
- 4.2 Statistical modeling
- 4.3 Divide-and-conquer: Constructing decision trees
- 4.4 Covering algorithms: Constructing rules
- 4.5 Mining association rules
- 4.6 Linear models
- 4.7 Instance-based learning
- 4.8 Clustering
- 4.9 Further reading
5. Credibility: Evaluating What’s Been Learned
- 5.1 Training and testing
- 5.2 Predicting performance
- 5.3 Cross-validation
- 5.4 Other estimates
- 5.5 Comparing data mining methods
- 5.6 Predicting probabilities
- 5.7 Counting the cost
- 5.8 Evaluating numeric prediction
- 5.9 The minimum description length principle
- 5.10 Applying the MDL principle to clustering
- 5.11 Further reading
6. Implementations: Real Machine Learning Schemes
- 6.1 Decision trees
- 6.2 Classification rules
- 6.3 Extending linear models
- 6.4 Instance-based learning
- 6.5 Numeric prediction
- 6.6 Clustering
- 6.7 Bayesian networks
7. Transformations: Engineering the Input and Output
- 7.1 Attribute selection
- 7.2 Discretizing numeric attributes
- 7.3 Some useful transformations
- 7.4 Automatic data cleansing
- 7.5 Combining multiple models
- 7.6 Using unlabeled data
- 7.7 Further reading
8. Moving on: Extensions and Applications
- 8.1 Learning from massive datasets
- 8.2 Incorporating domain knowledge
- 8.3 Text and Web mining
- 8.4 Adversarial situations
- 8.5 Ubiquitous data mining
- 8.6 Further reading
Part II: The Weka Machine Learning Workbench
9. Introduction to Weka
- 9.1 What’s in Weka?
- 9.2 How do you use it?
- 9.3 What else can you do?
- 9.4 How do you get it?
10. The Explorer
- 10.1 Getting started
- 10.2 Exploring the Explorer
- 10.3 Filtering algorithms
- 10.4 Learning algorithms
- 10.5 Metalearning algorithms
- 10.6 Clustering algorithms
- 10.7 Association-rule learners
- 10.8 Attribute selection
11. The Knowledge Flow Interface
- 11.1 Getting started
- 11.2 The Knowledge Flow components
- 11.3 Configuring and connecting the components
- 11.4 Incremental learning
12. The Experimenter
- 12.1 Getting started
- 12.2 Simple setup
- 12.3 Advanced setup
- 12.4 The Analyze panel
- 12.5 Distributing processing over several machines
13. The Command-line Interface
- 13.1 Getting started
- 13.2 The structure of Weka
- 13.3 Command-line options
14. Embedded Machine Learning
- 14.1 A simple data mining application
- 14.2 Going through the code
15. Writing New Learning Schemes
- 15.1 An example classifier
- 15.2 Conventions for implementing classifiers
People also search for Data Mining: Practical Machine Learning Tools and Techniques 2nd:
borrow data mining practical machine learning tools and techniques
data mining practical machine learning tools and techniques pdf
what are the data mining tools
examples of data mining tools
practical mining