A Vertex Incremental Approach for Dynamically Maintaining Chordal Graphs 1st edition by Anne Berry, Pinar Heggernes, Yngve Villanger – Ebook PDF Instant Download/Delivery. 3540206958, 978-3540206958
Full download A Vertex Incremental Approach for Dynamically Maintaining Chordal Graphs 1st Edition after payment
Product details:
ISBN 10: 3540206958
ISBN 13: 978-3540206958
Author: Anne Berry, Pinar Heggernes, Yngve Villanger
For a chordal graph G, we study the problem of whether a new vertex u and a given set of edges between u and vertices of G can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, define a maximal subset of the proposed edges that can be added, or conversely a minimal set of extra edges that should be added in addition to the given set. Based on these results, we present a new algorithm which computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time. This time complexity matches the best known time bound for minimal triangulation, using a totally new vertex incremental approach. In opposition to previous algorithms, our process adds each new vertex without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added at further steps.
A Vertex Incremental Approach for Dynamically Maintaining Chordal Graphs 1st Table of contents:
-
Introduction
- 1.1 Background on Chordal Graphs and Their Importance
- 1.2 Motivation for Dynamic Maintenance of Chordal Graphs
- 1.3 The Vertex Incremental Approach: An Overview
- 1.4 Key Contributions of the Paper
- 1.5 Structure of the Paper
-
Preliminaries and Related Work
- 2.1 Definition and Properties of Chordal Graphs
- 2.2 Algorithms for Chordal Graph Recognition and Completion
- 2.3 Dynamic Graph Algorithms: Challenges and Existing Solutions
- 2.4 Vertex Incremental Methods in Graph Theory
- 2.5 Related Work on Maintaining Graph Properties Dynamically
- 2.6 Gaps in the Literature and the Need for the Proposed Approach
-
Problem Formulation
- 3.1 Formal Definition of the Dynamic Chordal Graph Maintenance Problem
- 3.2 Problem Constraints and Assumptions
- 3.3 Incremental Update Model: Vertex Insertions
- 3.4 Goals: Efficiency, Correctness, and Scalability
-
The Vertex Incremental Approach
- 4.1 Overview of the Incremental Approach
- 4.2 Detailed Algorithm for Maintaining Chordality on Vertex Insertions
- 4.3 Data Structures and Operations for Efficient Updates
- 4.4 Handling Different Graph Modifications: Insertion and Deletion of Vertices
- 4.5 Algorithmic Complexity Analysis
- 4.6 Correctness and Completeness of the Approach
-
Theoretical Analysis
- 5.1 Proof of Correctness for Incremental Maintenance
- 5.2 Time Complexity and Space Complexity Analysis
- 5.3 Comparison with Previous Approaches in Terms of Efficiency
- 5.4 Scalability of the Algorithm for Large Graphs
- 5.5 Analysis of Worst-Case Performance
-
Experimental Results
- 6.1 Experimental Setup and Methodology
- 6.2 Benchmarking the Incremental Algorithm Against Other Methods
- 6.3 Performance Metrics: Time, Space, and Correctness
- 6.4 Results on Random Graphs and Real-World Datasets
- 6.5 Discussion of Experimental Findings and Insights
-
Applications
- 7.1 Applications in Dynamic Network Analysis
- 7.2 Use in Graph-Based Database Systems
- 7.3 Applications in Scheduling and Optimization Problems
- 7.4 Real-Time Applications in Social Networks and Web Graphs
- 7.5 Integration with Other Graph Algorithms (e.g., Coloring, Clique Detection)
-
Challenges and Limitations
- 8.1 Limitations in Handling Deletions of Vertices or Edges
- 8.2 Impact of Graph Sparsity and Density on Performance
- 8.3 Handling Large Graphs in Resource-Constrained Environments
- 8.4 Sensitivity to Graph Structure and Graph Modifications
- 8.5 Addressing Edge Cases in Dynamic Graph Maintenance
-
Future Directions
- 9.1 Improving the Approach for Efficient Deletion Handling
- 9.2 Extending the Approach to Handle Edge Insertions and Deletions
- 9.3 Hybrid Approaches for Graph Maintenance in Distributed Systems
- 9.4 Exploring Parallel and Distributed Algorithms for Large-Scale Graphs
- 9.5 Generalizing the Approach for Other Graph Classes and Dynamic Settings
-
Conclusion
- 10.1 Summary of Contributions and Findings
- 10.2 Impact of the Vertex Incremental Approach on Dynamic Graph Maintenance
- 10.3 Final Remarks on Future Research in Dynamic Graph Algorithms
People also search for A Vertex Incremental Approach for Dynamically Maintaining Chordal Graphs 1st:
incremental versus iterative
incremental approach vs iterative approach
decremental vs incremental
difference between incremental and iterative
example of a vertical integration